Overview
GnuPG is a tool for secure communication and data storage. It can be used to encrypt data and to create digital signatures. GnuPG is a complete and free replacement for PGP. Because it does not use the patented IDEA algorithm, it can be used without any restrictions. GnuPG uses public-key cryptography so that users may communicate securely. In a public-key system, each user has a pair of keys consisting of a private key and a public key. A user's private key is kept secret; it need never be revealed. The public key may be given to anyone with whom the user wants to communicate.
Features
You can find all the software related to GnuPG at http://www.gnupg.org/download.html
Installation
Copy the gnupg source file to ./usr/local/ directory or wherever you
want to install it and then cd to that directory.
[root@dragon local] tar xvzf gnupg-1.0.4.tar.gz
[root@dragon local]# cd gnupg-1.0.4
[root@dragon gnupg-1.0.4]# ./configure
[root@dragon gnupg-1.0.4]# make
This will compile all source files into executable binaries.
[root@dragon gnupg-1.0.4]# make check
It will run any self-tests that come with the package.
[root@dragon gnupg-1.0.4]# make install
It will install the binaries and any supporting files into appropriate
locations.
[root@dragon gnupg-1.0.4]# strip /usr/bin/gpg
The "strip" command will reduce the size of the "gpg" binary for better
performance.
Common Commands
1: Generating a new keypair
We must create a new key-pair (public and private) for the first time.
The command line option --gen-key is used to create a new primary keypair.
Step 1
[root@dragon /]# gpg --gen-key
gpg (GnuPG) 1.0.2; Copyright (C) 2000 Free Software Foundation, Inc.
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions. See the file COPYING for details.
gpg: /root/.gnupg: directory created
gpg: /root/.gnupg/options: new options file created
gpg: you have to start GnuPG again, so it can read the new options
file
Step 2
Start GnuPG again with the following command:
[root@dragon /]# gpg --gen-key
gpg (GnuPG) 1.0.2; Copyright (C) 2000 Free Software Foundation, Inc.
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions. See the file COPYING for details.
gpg:/root/.gnupg/secring.gpg: keyring created
gpg: /root/.gnupg/pubring.gpg: keyring created
Please select what kind of key you want:
(1) DSA and ElGamal (default)
(2) DSA (sign only)
(4) ElGamal (sign and encrypt)
Your selection? 1
DSA keypair will have 1024 bits.
About to generate a new ELG-E keypair.
minimum keysize is 768 bits
default keysize is 1024 bits
highest suggested keysize is 2048 bits
What keysize do you want? (1024) 2048
Do you really need such a large keysize? y
Requested keysize is 2048 bits
Please specify how long the key should be valid.
0 = key does not expire
<n> = key expires in n days
<n> w = key expires in n weeks
<n> m = key expires in n months
<n> y = key expires in n years
Key is valid for? (0) 0
Key does not expire at all
Is this correct (y/n)? y
You need a User-ID to identify your key; the software constructs the
user id
from Real Name, Comment and Email Address in this form:
"
Real name: Kapil sharma
Email address: [email protected]
Comment: Unix/Linux consultant
You selected this USER-ID:
"Kapil Sharma (Unix/Linux consultant) <[email protected]> "
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
You need a Passphrase to protect your secret key.
Enter passphrase: [enter a passphrase]
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
++++++++++.+++++^^^
public and secret key created and signed.
Now I will explain about the various inputs asked during the generation of the keypairs.
There are advantages and disadvantages of choosing a longer key.
The advantages are: 1) The longer the key the more secure it is against
brute-force attacks
The disadvantages are: 1) encryption and decryption will be slower
as the key size is increased 2) a larger keysize may affect signature length
The default keysize is adequate for almost all purpose and
the keysize can never be changed after selection.
Real name: Enter you name here
Email address: Enter you email address
Comment:
Enter
any comment here
There is no limit on the length of a passphrase, and it should be carefully
chosen. From the perspective of security, the passphrase to unlock the
private key is one of the weakest points in GnuPG
(and other public-key encryption systems as well) since it is the only
protection you have if another individual gets your private key. Ideally,
the passphrase should not use words from a
dictionary and should mix the case of alphabetic characters as well
as use non-alphabetic characters. A good passphrase is crucial to the secure
use of GnuPG.
2: Generating a revocation certificate
After your keypair is created you should immediately generate a revocation
certificate for the primary public key using the option --gen-revoke. If
you forget your passphrase or if your private
key is compromised or lost, this revocation certificate may be published
to notify others that the public key should no longer be used.
[root@dragon /]# gpg --output revoke.asc --gen-revoke mykey
Here mykey must be a key specifier, either the key ID of your primary
keypair or any part of a user ID that identifies your keypair. The generated
certificate will be left in the file
revoke.asc. The certificate should not be stored where others can access
it since anybody can publish the revocation certificate and render the
corresponding public key
useless.
3: Listing Keys
To list the keys on your public keyring use the command-line option --list-keys.
[root@dragon /]# gpg --list-keys
/root/.gnupg/pubring.gpg
------------------------
pub 1024D/020C9884 2000-11-09 Kapil Sharma (Unix/Linux consultant)
<[email protected]>
sub 2048g/555286CA 2000-11-09
4: Exporting a public key
You can export your public key to use it on your homepage or on a available
key server on the Internet or any other method. To send your public key
to a correspondent you must first export it. The command-line option --export
is used to do this. It takes an additional argument identifying the public
key to export.
[...]
-----END PGP PUBLIC KEY BLOCK-----
[root@dragon /]# gpg --import <filename>
Here "filename" is the name of the exported public key.
For example:
[root@dragon /]# gpg --import mandrake.asc
gpg: key :9B4A4024: public key imported
gpg: /root/.gnupg/trustdb.gpg: trustdb created
gpg: Total number processed: 1
gpg:
imported: 1
In the above example we imported the Public key file "mandrake.asc" from the company Mandrake Linux, downloadable from Mandrake Internet site, into our keyring.
6: Validating the key
Once a key is imported it should be validated. A key is validated
by verifying the key's fingerprint and then signing the key to certify
it as a valid key. A key's fingerprint can be quickly viewed with the --fingerprint
command-line option.
[root@dragon /]# gpg --fingerprint <UID>
As a example:
[root@dragon /]# gpg --fingerprint mandrake
pub 1024D/9B4A4024 2000-01-06 MandrakeSoft (MandrakeSoft official
keys) <[email protected]>
Key fingerprint = 63A2 8CBD A7A8 387E 1A53
2C1E 59E7 0DEE 9B4A 4024
sub 1024g/686FF394 2000-01-06
In the above example we verified the fingerprint of mandrake. A key's fingerprint is verified with the key's owner. This may be done in person or over the phone or through any other means as long as you can guarantee that you are communicating with the key's true owner. If the fingerprint you get is the same as the fingerprint the key's owner gets, then you can be sure that you have a correct copy of the key.
7: Key Signing
After importing and verifying the keys that you have imported into
your public database, you can start signing them. Signing a key certifies
that you know the owner of the keys. You should only sign the keys when
you are 100% sure of the authentication of the key.
pub 1024D/9B4A4024 created: 2000-01-06 expires: never
trust: -/q
Fingerprint: 63A2 8CBD A7A8 387E 1A53 2C1E 59E7 0DEE 9B4A 4024
MandrakeSoft (MandrakeSoft official keys) <[email protected]>
Are you really sure that you want to sign this key
with your key: "Kapil Sharma (Unix/Linux consultant) <[email protected]> "
Really sign? y
You need a passphrase to unlock the secret key for
user: "Kapil Sharma (Unix/Linux consultant) <[email protected]> "
1024-bit DSA key, ID 020C9884, created 2000-11-09
Enter passphrase:
9: Encrypting and decrypting
The procedure for encrypting and decrypting documents is very simple.
If you want to encrypt a message to mandrake, you encrypt it using mandrake
public key, and then only mandrake can
decrypt that file with his private key. If Mandrake wants to
send you a message, it encrypts it using your public key, and you
decrypt it with your private key.
To encrypt and sign data for the user Mandrake that we have added on
our keyring use the following command (You must have a public key of the
recipient):
[root@dragon /]# gpg -sear <UID of the public key> <file>
As an example:
[root@dragon /]# gpg -sear Mandrake document.txt
You need a passphrase to unlock the secret key for
user: "Kapil Sharma (Unix/Linux consultant) <[email protected]> "
1024-bit DSA key, ID 020C9884, created 2000-11-09
Enter passphrase:
Here "s" is for signing , "e" for encrypting, "a" to create ASCII armored output (".asc" is ready for sending by mail), "r" to encrypt the user id name and <file> is the data you want to encrypt
[root@dragon /]# gpg -d <file>
As an example:
[root@dragon /]# gpg -d documentforkapil.asc
You need a passphrase to unlock the secret key for
user: "Kapil Sharma (Unix/Linux consultant) <[email protected]> "
1024-bit DSA key, ID 020C9884, created 2000-11-09
Enter passphrase:
Here the parameter "d" is for decrypting the data and <file> is a
data you want to decrypt.
[Note: you must have the public key of the sender of the message/data
that you want to decrypt in your public keyring database.]
10: Checking the signature
Once you have extracted your public key and exported it then by using
the --verify option of GnuPG anybody can check whether encrypted data from
you is also signed by you.
Some uses of GnuPG software
1: Send encrypted mail messages.
2: Encrypt files and documents
3: Transmit encrypted files and important documents through network
Here is a list of some of the Frontend and software for GnuPG
GPA aims to be the standard
GnuPG graphical frontend. This has a very nice GUI interface.
GnomePGP
is a GNOME desktop tool to control GnuPG.
Geheimniss is a KDE frontend
for GnuPG.
pgp4pine is a Pine filter to
handle PGP messages.
MagicPGP is yet
another set of scripts to use GnuPG with Pine.
PinePGP
is also a Pine filter for GnuPG.
More Information
http://www.gnupg.org/docs.html
Conclusion
Anybody who is cautious about security must use GnuPG. It is one of the best open-source programs which has all the functions for encryption and decryption for all your secure data and can be used without any restrictions since it is under GNU General Public License. It can be used to send encrypted mail messages, files and documents for security. It can also be used to transmit files and important documents through network securely.